If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+35x-100=0
a = 15; b = 35; c = -100;
Δ = b2-4ac
Δ = 352-4·15·(-100)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-85}{2*15}=\frac{-120}{30} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+85}{2*15}=\frac{50}{30} =1+2/3 $
| x/4-6/5=x/3 | | 8m+4=3(m-1+7 | | (50-2x)(120-2x)=3000 | | y= | | x²-14=5x²-50 | | 3y2-2y-5=0 | | 2x²+3=131 | | x²=4/9 | | |3k-2|=15 | | -3(a-4.6)+2.3=-6.4 | | -4x+3=7x+25 | | 7x=9x-40 | | 2(t+4)+1.34=19.34 | | 18.77=3.5(d–12.6)+3.37 | | -2.44=2.44(m+-4) | | (X-5)(2x-7)=4 | | 3n+10=-8+6n | | 3x+5=4x+x | | 7x+2=2x+14 | | 36÷x=(-4) | | 135=(13x/3)+(5x-5) | | y(-7)=35 | | x+6x+7=13+7x | | 135=13x/3+5x-5 | | x5(x+1)=20 | | V=-20.8y+10.4y | | 4(3x-1=44 | | 55+4x=26 | | P(x=200)= | | 5b-8=3b=24 | | 2a-4+2a=16 | | y/15=-3/8 |